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ABSTRACT
Bartering is a timeless practice that is becoming increas-
ingly popular on the Web. Recommending trades for an on-
line bartering platform shares many similarities with tradi-
tional approaches to recommendation, in particular the need
to model the preferences of users and the properties of the
items they consume. However, there are several aspects that
make bartering problems interesting and challenging, specif-
ically the fact that users are both suppliers and consumers,
and that the trading environment is highly dynamic. Thus,
a successful model of bartering requires us to understand
not just users’ preferences, but also the social dynamics of
who trades with whom, and the temporal dynamics of when
trades occur.

We propose new models for bartering-based recommenda-
tion, for which we introduce three novel datasets from on-
line bartering platforms. Surprisingly, we find that existing
methods (based on matching algorithms) perform poorly on
real-world platforms, as they rely on idealized assumptions
that are not supported by real bartering data. We develop
approaches based on Matrix Factorization in order to model
the reciprocal interest between users and each other’s items.
We also find that the social ties between members have a
strong influence, as does the time at which they trade, there-
fore we extend our model to be socially- and temporally-
aware. We evaluate our approach on trades covering books,
video games, and beers, where we obtain promising empiri-
cal performance compared to existing techniques.
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Figure 1: Illustration of the problem setting in which a user
(Tom) can exchange an item with owners of other items
available on the platform (assuming the recipient has a re-
ciprocal interest in the item being given away).

1. INTRODUCTION
At its inception, the economy is assumed to have been

barter-based [6]. Money later appeared as a medium of ex-
change and a measure of value, making the pricing of assets
an easier task, and shaping the economic practices of to-
day. With the advent of widespread digital communication,
barter has re-emerged into the lives of 21st century con-
sumers [9]. The idea on which this revived economic model
rests is that of extending the lifetime of goods, in order for
them to serve the purposes of multiple owners, or to give
users access to obscure or difficult-to-obtain items. Numer-
ous platforms are dedicated to swapping items of various
categories, such as swapacd.com, swapadvd.com, read-
itswapit.co.uk, bookmooch.com, etc.

However, the aforementioned platforms are remarkably
ad-hoc and lack mechanisms to recommend trades,1 requir-
ing that users manually search for compatible trading part-
ners. Since the main prerequisite for barter is a double coin-
cidence of ‘wants’ (i.e., that both parties desire each other’s
goods at the same time) such an endeavor becomes challeng-
ing. Given the recent shift towards green practices, a cate-
gory in which bartering naturally fits, this problem presents
high potential in terms of improving consumer experience.
However, little research has been done on methods for rec-
ommending trades within an online bartering platform.

1There exist some other platforms that employ a trade
matching method, like barterquest.com [5], but their data
was inaccessible. Their matching method, however, does not
involve user preference modeling.



In order to build a recommender system for bartering plat-
forms, eligible trading partners need to be found within the
user base. Each platform user has a public ‘wish list’ com-
prising items they wish to acquire, and a public ‘give-away
list,’ containing items to be given away in exchange for the
desired ones. Initial work done on the problem [1, 2, 27] pro-
poses ‘strict’ matching criteria between explicit user ‘wants’
and ‘haves,’ rendering a pair of users trade-compatible only
if their reciprocal wish list/give-away list intersections are
simultaneously non-empty. Surprisingly, we find that such
an approach is highly ineffective on real-world datasets col-
lected from online bartering platforms, as the double coinci-
dence of ‘wants’ and ‘haves’ is very low, with fewer than 5%
of users being eligible to receive recommendations. More-
over, real data reveals that the items being transacted are
not always listed in users’ wish lists prior to the transaction,
suggesting the need for a system that can offer ‘serendipity.’
Such a system would be able to recommended items that
a user likes, but which are not explicitly mentioned among
their preferences, either because the user omitted them when
creating the wish list, or because they are unaware of their
existence. In summary, we find that existing approaches
generally do not yield recommendations that are consistent
with observed transactions, possibly suggesting that users
are guided by criteria other than those revealed by wish list
analysis.

In this paper we propose a model based on Matrix Fac-
torization [12] that estimates cross-preferences between po-
tential trade partners, or more precisely the strength of the
reciprocal interest that two users have for each other’s items.
The end goal of our system is to discover, for each pair of
candidate users, a pair of items that are most likely to be
exchanged between them; swap recommendations are then
made by computing the sorted list of partner-item combina-
tions in order of reciprocal interest.

We build an initial model following traditional matrix fac-
torization approaches, which we then extend by incorpo-
rating social and temporal dynamics, as we find that users
develop trust in trading partners through repeated transac-
tions, and they tend to trade in bursts of repeated activity.
In order to capture these effects, we propose a model that
is both socially- and temporally- aware, showing substantial
improvements over previous matching-based approaches and
‘vanilla’ matrix factorization.

Another contribution of our work is the introduction of
three large scale real-world datasets, composed not only of
wish lists and give-away lists, but also of actual transaction
histories. This allows us to qualitatively evaluate our ap-
proaches, by testing how well they rank transactions which
have actually taken place against others that have not. This
contribution is very important, as the user behavior revealed
by the data is quite different from what has previously been
assumed about bartering platforms.

We test the quality of the produced recommendations
against the ground truth of the collected bartering histo-
ries, a form of evaluation that has surprisingly been missing
in previous works on bartering [1, 2, 13, 19, 27]. We com-
pare against a state-of-the-art item exchange method [27],
and discuss its shortcomings on concrete examples of real-
world bartering datasets. Our approach deals with several
drawbacks of previous methods, by tackling the problem in

Notation Description

R Interaction matrix ∈ R|U|×|I|

I Item set
U User set
uj User uj ∈ U
ik Item ik ∈ I
rujik Entry in R (for user uj and item ik)
Wj Wish list of user uj
Gj Give-away list of user uj
Hg
j History of given item for user uj

Hr
j History of received item for user uj

ŷujik Predicted preference of user uj for item ik
1 Heaviside step function

Table 1: Notation

a more flexible way through the use of user preference mod-
eling, rather than relying on the incomplete truth provided
in users’ wish lists. This technique allows us to rank all
the swap opportunities that a user has in the system, thus
providing more choice, as well as serendipity.

2. RELATED WORK
The most closely related topics of related work to ours are

(a) those that study bartering and exchange in general, and
(b) those that model the latent preferences of users toward
items. We discuss each in detail below.

Early works on optimal barter exchange strategies.
The study of algorithms for exchange markets [4] was, at its
inception, inspired by the kidney exchange problem [22, 23].
In order to improve the number of patients receiving kidneys
despite having incompatible living donors, algorithms have
been developed to determine cross compatible patient-donor
pairs from the regional pool of transplant cases. The prob-
lem is solved by Roth et al. [22], using the The Top Trading
Cycles and Chains mechanism. Another relevant work is
that of Haddawy et al. [8], as it solves the problem of de-
termining a balanced matching of buyers and sellers in the
context of barter trade exchanges. The trades are managed
by an intermediary, and parties are matched based on sup-
ply and demand information, as well as their credit in terms
of a private label currency. The problem is modeled as a
minimum cost circulation on a network. Lastly, the work of
Mathieu [16] tackles the problem of finding bartering rings
in an e-marketplace, based on similarity matching of seek
and offer queries, expressed as weighted trees.

The Circular Single-item Exchange Model (CSEM).
Determining exchange cycles in a bartering network is a
more general problem than that of pairwise kidney exchange.
As opposed to people receiving and donating one item (a kid-
ney), in a traditional exchange market users have multiple
items to give away, and potentially multiple incoming items.
Abassi et al. [2, 3] model this setting as a directed graph,
where nodes represent users and edges are labeled with item
identifiers. The edge labels are determined by the wish lists
and give-away lists of the users. A directed cycle in this
graph represents a potential transaction (where each user
gives away the item to the subsequent node, while receiving
another item from the preceding node).



The Binary Value Exchange Model (BVEM). A dif-
ferent perspective is taken by Su et al. [27], who solve the
item exchange problem for cycles of length two (i.e., swaps).
The system is designed to be used in competitive online
environments such as online games with a hefty real-time
update schedule. Moreover, each item is associated with
a user-defined price, and the value to be optimized is the
maximum gain of each user.

Matrix Factorization (MF) is a popular technique in rec-
ommender systems. MF estimates unobserved user prefer-
ences from a sparse interaction matrix R ∈ R|U|×|I|, where
U is the user set and I is the item set, which is low-rank
approximated [10]. MF techniques project every user and
every item into a common low-dimensional space, such that
their dot product approximates the observed interactions,
i.e., the ‘compatibility’ between a user and an item.

Later, when considering social relationships and tempo-
ral dynamics, we mainly build upon established ideas that
extend MF to incorporate social regularization [14], and
temporal dynamics in recommender systems [11].

Bayesian Personalized Ranking (BPR). Bayesian Per-
sonalized Ranking is a pairwise optimization procedure pro-
posed by Rendle et al. [21], that directly optimizes a rank-
ing measure (AUC). This technique naturally deals with im-
plicit feedback, as it only considers ‘positive’ user-item in-
teractions, while not differentiating between negative obser-
vations and missing values. The intuition here is essentially
that users prefer items they have observed over the ones they
have not. This pairwise optimization technique can be used
in conjunction with various model classes, such as Matrix
Factorization, or Adaptive k-Nearest-Neighbors [21].

2.1 Key Differences
Our work is related to BPR in the sense that we also aim

to discover latent factors in order to optimize ranked lists of
recommendations in terms of the AUC. In terms of exchange
models, BVEM comes the closest to the present problem
formulation. Firstly, BVEM is also concerned with rec-
ommending swaps, as opposed to CSEM where exchange
cycles are longer. Secondly, BVEM recommends a list of
swaps for each user, sorted decreasingly according to user
gain in terms of item price. Or approach also produces rec-
ommendations as sorted lists, but uses a different scoring
function, which is based on the estimated user preference.
The key difference, however, is that BVEM’s recommen-
dations are still based on exact matches between the wish
lists and the give-away lists of the two partners, which is
too restrictive on real datasets, as we show in the following
section.

3. DATA ANALYSIS
To evaluate our approach, we first conducted an empirical

study by collecting the following datasets:

1. Swapacd2 is a CD exchange platform.

2. Swapadvd3 is a DVD exchange platform.

3. ReaditSwapit4 is a book exchange platform.

2http://www.swapacd.com
3http://www.swapadvd.com
4http://www.readitswapit.co.uk

Platform
user
count

item
count

transaction
count

% of users w/
at least one
swapping
partner

Bookmooch 84,989 2,098,699 148,755 0.2%
Ratebeer 2,215 35,815 125,665 65.9%
/r/gameswap 9,888 3,470 2,008 -
Swapacd 4,516 244,893 - 0.5%
Swapadvd 7,562 91,241 - 0%
ReaditSwapit 33,151 94,399 - 4.2%

Table 2: Statistics for our collected platform data. The
rightmost column shows the percentage of users that have
at least one trading opportunity, according to their public
lists. On most platforms, users have very few eligible trading
partners.

4. Bookmooch5 is a book exchange platform.

5. Ratebeer6 is a beer exchange (and rating) platform.

6. /r/gameswap7 is a self-organized subreddit made for
users to exchange video games.

Basic statistics of the datasets are shown in Table 2. Of
the six datasets, 4, 5 and 6 also have transaction histories,
and are thus our main focus throughout the paper.

The platforms have object type specificity. It is worth
noting that each platform is oriented towards only one kind
of item (books, games, beers). This suggests that the value
of items does not vary significantly, as particularly valuable
objects (e.g. Leonardo da Vinci’s Codex Hammer) would be
very unlikely to be listed for exchange. Therefore, a coarse
approximation could say that, with few exceptions, most
objects on such platforms are of comparable value. There
exist, however, bartering platforms where exchange is pos-
sible between items of different categories (e.g., a book for
a microwave). We have come across a number of such plat-
forms during our research, for example www.swapz.co.uk
and www.barteronly.com, but their data was not acces-
sible.

All the datasets were obtained through crawling the cor-
responding websites, except for Bookmooch, which con-
stantly exposes an updated snapshot of its database. For
Ratebeer and /r/gameswap, the transactional informa-
tion was extracted from textual submissions of users, con-
taining information about their completed transactions (i.e.,
the transacting parties, along with the beers and games they
exchanged, respectively).8

The datasets are long-tailed. The distribution of the
size of users’ wish lists and give-away lists, as well as the
popularity of each item (both in terms of how many users
own it and of how many users desire it), are depicted in
Figure 2, as are the Cumulative Distribution Functions for
the number of transactions that each user has taken part in
(right column). These quantities appear to approximately
follow power-laws, and suggest the presence of ‘power users’
[17] on the platforms. Swapacd, Swapadvd and Read-

5http://www.bookmooch.com
6http://www.ratebeer.com
7http://www.reddit.com/r/gameswap
8All the datasets are available at http://swapit.github.io/.
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Figure 2: The distribution of item list sizes and item popu-
larity approximately follows a power-law for the three con-
sidered platforms (top: Bookmooch; middle: Ratebeer;
bottom: /r/gameswap). The CDF plots on the right show
user activity in terms of the number of swap transactions
each user participates in. The presence of power users, who
account for a majority of the transactions, is apparent on all
three platforms.

itSwapit, yield similar results, but are omitted due to space
considerations.

The fact that these quantities follow power-laws is not
surprising, but it partly explains our following observation
that there is little coincidence between ‘haves’ and ‘wants’
among real trades—while the platforms have many users,
there are long tails of rare items among small wish and give-
away lists.

Pairs of ‘eligible’ swapping partners are very scarce.
Two users are eligible swapping partners if each of them de-
sires one or more items in the other’s give-away list. The
percentage of users having at least one eligible swapping
partner is summarized in Table 2, for the considered snap-
shots of the swapping platforms. The table contains no entry
for /r/gameswap, because the organization of the informa-
tion on the threads rendered us unable to extract an exact
snapshot of all the users’ ‘wants’ and ‘haves’ at a fixed point
in time.9

9For example, if uj posts their item lists on the thread at
time t, and uk does the same d days later, one may be wrong
to assume that uj ’s preferences have not changed in the
meantime (they may have exchanged items, rendering the
lists stale, because the system has no way of updating them).
Therefore, a snapshot taken at time t + d can only include
the subset of users who posted on the thread at that time.
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Figure 3: Evolution in popularity of the top-5 beer styles
(using the Ratebeer dataset).

One may note in Table 2 that the shortage of eligible
swapping partners proves to be a problem even for large
user bases, like that of Bookmooch. An exception to the
rule is seen for Ratebeer, which may be explained by the
fact that the platform is several years older than the others,
and has a global community of users.

An implication of the aforementioned scarcity is that ap-
proaches that match users exclusively according to wish list
and give-away list content, such as CSEM [2] and BVEM
[27], do not perform well on this data, yielding too few (or
zero) recommendations per user. In practice, as we show
next, many trades take place between users who are not
strictly ‘eligible.’

Preferences are not exhaustively listed in wish lists.
Since Bookmooch surfaces weekly database snapshots, it
is possible to evaluate the extent to which books that a user
receives while trading on the platform were present in their
wish lists before the transaction took place. Using these
snapshots from Bookmooch, we computed this percentage
to be, on average, 33.2% per user. This directly implies the
need for a recommender which can infer a user’s preferences
toward items which they may not be aware of (or did not
explicitly declare in their wish list), and may instead discover
serendipitously. Critically, this issue is one not addressed in
previous work.

Users trade multiple times with the same peer. The
intuition that pairs of users who successfully traded in the
past are likely to trade again is supported by an observa-
tion we make about transaction events. On average, a pair
of users trades 1.35 times on Bookmooch, 3.56 times on
Ratebeer and 1.19 times on /r/gameswap. This suggests
that social ties may play an important role in determining
the trading partner of a user, and that pairs of users who
successfully function as trading partners are likely to trade
again in the future.

Item popularity and trade frequency are time de-
pendent. A highly dynamic environment such as that of a
bartering platform is subject to time-dependent trends. In
Figure 3 we observe how beer styles evolve in popularity,
measured as their trade frequency over time. For example,



Figure 4: Cumulative frequency plot of the transactions per-
formed on Bookmooch. Note that while there is a core of
power users who perform multiple transactions per day (i.e.,
∆t < 100), most of the items are swapped infrequently (i.e.,
a few times per year).

we see how IPAs steadily gain popularity, surpassing all the
other styles by the year 2013, whereas before that Imperial
Stouts were the most popular among the beer styles being
traded.

Figure 4, on the other hand, suggests a different type
of time-dependent behavior. Every point corresponds to
a transaction, focused on either the users transacting the
item (top plot), or the item being transacted (bottom plot).
The Y-value is given by the number of days passed since
the particular user previously transacted (respectively the
number of days passed since the last time the same item
was transacted on the platform). Figure 4 shows the exis-
tence of items and users more actively involved in trading,
as opposed to others with less frequent interaction.

3.1 Limitations of Previous Work
The main disadvantages of the previously mentioned ap-

proaches come from the restrictions on which they rely. For
example the Circular Single-item Exchange Model (CSEM)
[2] requires that a user and their item be recommended to
only one user at a time; this is disadvantageous as it reduces
the probability of an item being traded. Such a restriction
would accentuate the scarcity of eligible swapping partners,
as a recommendation of an item to a user would be further
conditioned on whether the same item has already been rec-
ommended to somebody else. Ideally, an item should be
recommended to as many users as are potentially interested.

While the Binary Value Exchange Model (BVEM) [27]
more realistically models the trade recommendation prob-
lem, in order to be tractable it requires an assumption that
the length of the item lists be bounded to some small num-
ber (say, less than 50). This is contradicted by our findings
across all collected datasets, showing that the size of the item
lists varies between one and several thousand items, approx-
imately following a power-law. This assumption, however,
only affects time performance rather than the quality of the
recommendations.

β = 0.6 β = 0.7 β = 0.8 β = 0.9

Total recommendations 113 111 110 110
Distinct users 155 152 150 150

Table 3: Number of BVEM recommendations for various
values of the price matching parameter β. Note that each
recommendation is made to two distinct users.

The most important drawback—common to both previous
approaches—is that they only consider explicit user prefer-
ences, which are shown to be far from complete. Neither
BVEM [27], nor CSEM [2] make use of the implicit prefer-
ence information encoded in users’ transaction histories, but
base their recommendations solely on the items which a user
explicitly lists in their wish list. Not only does this prevent
serendipitous item discovery (which makes up for a major-
ity of trades in real transaction histories), but it also implies
a much too rigid definition of ‘eligible swapping partners,’
yielding very few trade opportunities (as seen in Table 2).
A system aiming to pair users based on matching wish lists
and give-away lists can only make recommendations to an
extremely limited number of users in these datasets.

To support the latter statement, we tested the perfor-
mance of BVEM [27] on the Bookmooch dataset, as it is
the only one providing item pricing information as required
by the model. Table 3 summarizes the number of recommen-
dations produced using this approach for a dataset of 84,989
users, based on a snapshot from September 2015. Extremely
few users (a maximum of 155) receive recommendations un-
der BVEM, due to the scarcity in the coincidence of ‘wants’
(see Table 2). Having recorded the trade history for the four
months following the September snapshot, we observed that
3,864 distinct users received books via trades, a much higher
number than that of users being made recommendations.
Also, the total number of recommendations made system-
wide is very low (with a maximum of 113), compared to the
size of the user base; this effect would be even more dras-
tic on Swapadvd, where BVEM would fail to make any
recommendations, as there are no pairs of eligible swapping
partners.

Moreover, we assessed the predictive power of the rec-
ommendations produced by BVEM, with respect to the
transactions recorded during the four months following the
database snapshot. None of the users who were predicted
to interact based on BVEM’s matching have actually ex-
changed any item in the concerned time frame, therefore
yielding zero recall.

CSEM with cycles of length two [2] and BVEM [27]
are particular instances of a more general approach, where
matching users depends on wish list and give-away list in-
tersections, and the problem boils down to finding the max-
imum matching on a bipartite graph in which nodes repre-
sent users, and edges exist between eligible swapping part-
ners. Edges can further be weighed according to various
quantities to be optimized platform-wide (e.g. an aggregate
reciprocal preference score for the involved users). Comput-
ing a maximum weight matching on this graph retrieves an
optimal set of user pairs with respect to the previously es-
tablished criterion. Such an approach can at best produce
a number of recommendations equal to the number of users
having at least one eligible swapping partner (see Table 2).
Also, a user may receive at most as many recommendations



as they have eligible swapping partners. Applying any such
technique to the aforementioned datasets would yield few
recommendations, and generally few options to any user re-
ceiving a recommendation.

Our observations point to the need for a more flexible ap-
proach, which better models user preferences, and is capable
of surfacing recommendations to a larger fraction of users.

4. MODEL

4.1 Problem Definition and Notation
Our notation is defined in Table 1.
The setting of the bartering platforms presently consid-

ered is described by a set of users U = {u1, u2, . . . um}, and
a set of items I = {i1, i2, . . . in} known at any time t. Each
user uj has a wish list Wj and a give-away list Gj , both of
which are available for all members to see. Wj is a subset
of I containing items which uj wishes to obtain, while Gj is
a subset of I with items to be given away by uj .

The key difference between bartering compared to tradi-
tional recommendation is that users are both suppliers and
consumers. Thus, every item ik has an associated owner uj ,
in whose give-away list Gj it appears, and a set of users who
desire it. Note that there might be items that are listed as
give-aways but are not wished for by any user, just as there
may be items that are wished for but not available. Also,
each user uj has an associated history of transactions, which
we will denote by Hj . Since transactions are bidirectional,
we define Hg

j to contain all the items that uj gives away
in transactions, and similarly, Hr

j to be all those which uj
receives via transactions:

Hg
j = {(ul, ij→l) |uj gives item ij→l to ul}

Hr
j = {(ul, ij←l) |uj receives item ij←l from ul}

In the following sections, we use the notation ŷujik to
denote the estimate of user uj ’s preference for item ik.

4.2 Modeling Basic User Preferences
The first goal of our model is to estimate a user’s prefer-

ence for an individual item. As our data contains wish lists
and past transactions, we use them as implicit feedback sig-
nals [18] when building the preference model.

Following the approach proposed by Hu et al. [10], the
user-item interaction matrix R is built based on implicit
feedback signals as follows:

rujik =

{
1, if ik ∈Wj , or (∗, ik) ∈ Hr

j

0, otherwise

(i.e., 1 iff the item belongs to uj ’s wish list, or there exists
a past transaction in which uj receives ik).

We want to model the preference ŷuj ,ik that a user uj
exhibits toward item ik. We start with a low-rank model of
users and items:

ŷuj ,ik = pTuj
qik (1)

where puj and qik are vectors describing the ‘preferences’ of
the user uj and the ‘properties’ of the item ik. Although
we defer details of our optimization procedure until Section
5.1, our goal is that ŷuj ,ik should be large if and only if the
user is ‘compatible’ with the item.

As this formulation of the optimization problem is the
simplest one, we will reference it as a baseline during our
experiments.

4.3 Incorporating Social Bias
The effect of incorporating social information into collabo-

rative filtering models has been shown to improve prediction
accuracy and alleviate data sparsity (e.g., Ma et al. [14], [7]).
As discussed in Section 3, users tend to repeatedly trade
with a selected subgroup of peers on the observed bartering
platforms, suggesting that their choices have a strong social
(or simply trust) component. This further points to the fact
that a plain low-rank decomposition of the interaction ma-
trix R as in Section 4.2 cannot fully capture the dynamics of
users’ behavior. Thus, we incorporate a directed social bias
S ∈ R|U|×|U| as part of the predictor where sujul models the
bias for user uj toward user ul. The extended model to be
optimized is described as follows:

ŷuj ,ul,ik = pTuj
qik + sujul (2)

where the preference score ŷuj ,ul,ik is now in terms of an
item ik and a user ul with whom the item is being traded.
Note that this relation is asymmetric, as the bias from uj
toward ul may differ from the bias from ul towards uj .

Also note that the optimization remains tractable after
adding the social bias term, as in practice users trade with
a limited number of peers, rendering the matrix S sparse.

4.4 Adding Temporal Dynamics
User tastes may shift over time, or vary periodically (for

example, following certain holidays). Temporal dynamics
have previously been exploited in collaborative filtering set-
tings, e.g. to build temporally-aware models of preferences
on Netflix [11]. Motivated by the observations made in Sec-
tion 3, we extend our model from Equation 2 to capture the
temporal dynamics of bartering platforms.

There are two key aspects we wish to consider. Firstly,
the model should capture the activity ‘density’ of users. For
example, a user with high activity level at time t is prob-
ably more likely to trade at time t + ε than a user who
hasn’t traded during the same period. Secondly, the model
should capture seasonality, i.e., that certain items tend to
be more frequently requested during specific periods of the
year (e.g. Christmas beers at Christmas). The activity level
of users and the frequency with which items are traded can
be observed by analyzing the timestamps available in the
transaction histories of all three datasets.

In order to work with a smooth function, we approxi-
mate the trade time density using a Kernel Density Estima-
tor [24]. KDE is a non-parametric method for estimating
the Probability Density Function from a set of i.i.d. samples,
under weak smoothness assumptions. Equation 3 represents
such a density estimator for the sample set {x1, x2, . . . xn}:

δ(x; x̄) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(x− xi

h

)
(3)

For our purposes, we set K(x) = 1√
2π
exp(− 1

2
x2), i.e.,

the Gaussian kernel [15, 24]. Parameter h represents the
bandwidth, and can be set according to Silverman’s rule of
thumb [26], i.e., h ≈ 1.06σ̂n−1/5, where σ̂ is the standard
deviation of the samples. This quantity is then incorporated
into our predictor by modulating it with a parameter per
item τik for item ik, and a parameter τuj for user uj , which
are to be learned. Equation 4 represents our final model,
which includes the social bias and the temporal terms:



ŷuj ,ul,ik = pTuj
qik +

social bias︷ ︸︸ ︷
sujul + τuj δ(t; t̄uj ) + τikδ(t; t̄ik )︸ ︷︷ ︸

temporal dynamics

(4)

where t is the timestamp of the transaction sample, and t̄uj

and t̄ik are time points of activities for trades involving user
uj , and item ik (respectively).

4.5 Modeling Reciprocal Interest
In a bartering context, recommendations need to be ad-

dressed not just to a user, but to a user and each of the items
that they own. This reflects the idea that for each owned
item, a user may have different swapping opportunities. It
follows that for each (uj , ik), where ik is owned by uj , we
will generate a ranking of all possible pairs (ul, im), where
ul owns im, according to some preference score. It is worth
stressing that in this context, uj will have a different prefer-
ence score for item im owned by ul, than for the same item
owned by un 6= ul. In order to model the bidirectionality
of user preferences within each pair of potential swapping
partners, we will aggregate the preference of uj for im and
the preference of ul for ik into one meaningful score. Note
that we do not impose the constraint that im should be in
Wj , nor that ik belongs to Wl, so as to allow serendipity.

We evaluate potential transactions by defining an aggre-
gate score given by a function f : R2 → R. In the following,
we consider uj to be the owner of ik, and ul to be the owner
of im. We want to evaluate the strength of the cross prefer-
ence within the (uj , ul) pair, with respect to items im and ik
(respectively). We therefore aggregate interest scores into a
single value, which quantifies the ‘strength’ of the pair’s po-
tential interaction. For this purpose we use the arithmetic
mean:

ŷuj ,im,ul,ik = f(ŷujulim , ŷulujik )

=
1

2
(ŷujulim + ŷulujik )

(the basic idea of the reciprocal interest model is depicted
on the right). In this case, a strong preference from one user
compensates for a potentially weaker one coming from the
other. We also considered other aggregating functions, such
as the harmonic mean [20], but found that the arithmetic
mean was consistently the best performing one.

5. EXPERIMENTS AND DISCUSSION

5.1 Parameter Learning
Since our input data consists of implicit preference signals,

our methods’ performance should be oriented towards cor-
rectly ranking items relative to each other, rather than accu-
rately predicting missing values from the interaction matrix
R. The BPR optimization technique introduced by Rendle
et al. [21] is designed for this type of optimization problem.
Following the notation of Rendle et al. [21] the update rules
for this setting are defined as

θ ← θ + α · (σ(−x̂ujikim)
∂x̂ujikim

∂θ
+ λθΩ

′(θ)), (5)

where x̂ujikim = ŷujik − ŷujim , and θ represents the set of
parameters to be learned. Ω(θ) denotes a regularizer, and
in our case we opted for `2 regularization, i.e., Ω(θ) = ‖Θ‖22.

The term x̂ujikim denotes the difference in preference
score of user uj for two items ik and im. Should the dif-
ference be negative, the user is assumed to prefer im over
ik, and should it be positive the user is assumed to prefer ik
over im. In other words, the framework optimizes the frac-
tion of times that the model ranks a traded item higher than
a (randomly sampled) non-traded item, which approximates
the AUC [21]. The update from Equation 5 is repeated with
a large number of random samples until convergence.

The item preference terms ŷujik and ŷujim in the above
can be adapted with any of the previously described models
(Sections 4.2—4.5).

5.2 Evaluation Methodology
Our datasets contain one-for-one item exchanges between

user pairs, directly from the transaction history. We express
such transactions as quadruplets (uj , ik, ul, im), where uj
owns ik and ul owns im, and define I+ to be the set of all
positive interactions extracted from the considered transac-
tions:

I+ = {(uj , ik, ul, im)|(ul, im) ∈ Hr
j ∧ (uj , im) ∈ Hg

l ∧
(uj , ik) ∈ Hr

l ∧ (ul, ik) ∈ Hg
j }

Our evaluation set E consists of triplets (uj , im, in), where
(uj , ∗, ∗, im) ∈ I+ means that we have observed a positive
signal from user uj towards item im, while in is randomly
chosen from the set of items which do not belong to either
Wj or Hr

j , meaning that uj did not express a preference
towards it. A model that performs well should rank un-
seen items which received positive feedback from uj (like im)
higher than items with no observed interaction (like in). We
formally define E below:

E =
{

(uj , im, in)|(∗, im) ∈ Hr
j ∧ in /∈Wj ∧ (∗, in) /∈ Hr

j

}
.

To assess the effectiveness of our approach, we select the
widely used metric Area Under the Curve (AUC) [25] as our
measure of performance:

AUC =
1

|E|
∑
(uj ,im,in)∈E

1(ŷujim − ŷujin) =
1

|E|
∑
(uj ,im,in)∈E

1(x̂ujimin), (6)

where 1 is the Heaviside function (the latter formula uses
the notation introduced in Section 5.1). Negative user-item
pairs (uj , in) are randomly sampled from a set of unobserved
interactions for user uj . This metric shows how well the
model ranks items that the user has actually received from
transactions that are withheld during training, versus items
that the user has not interacted with, or does not explicitly
desire.

Note that above we have expressed the AUC in terms
of our simplest preference model (ŷujim), in order to avoid
excessive notation. However, the above expression can be
adapted to include any of the previously described models.

5.3 Experiments
Experimental Setup. Experiments were performed on
a single machine running Matlab R2015b. Following the
methodology proposed by Rendle et. al [21], the hyperpa-
rameters of all the described methods have been tuned based
on the expected error estimated on a randomly drawn initial
train/test split. To create the split, positive samples were
randomly selected from I+ for each user, and set aside for
testing. The negative samples from the triplets of E were



(1) (2) (3) (4) (5) (6) (7) (8) (9)

Dataset MF MF+B MF+B+S MF+B+T MF+B+S+T B impr. B+S impr. B+T impr. Total impr.

Bookmooch 0.758 0.798 0.849 0.938 0.958 +2.0% +9.15% +18.06% +19.98%

/r/gameswap 0.790 0.842 0.863 0.890 0.903 +5.19% +7.31% +9.99% +11.29%

Ratebeer 0.824 0.892 0.962 0.969 0.983 +6.79% +13.84% +14.55% +15.87%

Table 4: Results of our approach in terms of the AUC (higher is better): The best performing method on each dataset is
boldfaced. MF (1) stands for plain Matrix Factorization used as a baseline, B (2) stands for the bidirectional model, S (3)
stands for the social bias term and T (4) stands for the temporal dynamics term.

MF
MF+S
MF+S+T
Query

Pokémon Red/Blue
Splatoon
Mario Party

Gex (PS1 95)
Castelvania (PS1 99)
Fatal Fury (NeoGeo 91)

NFL Head Coach 09
MLBPA Baseball
FIFA Soccer 08

GTA V
Metal Gear Solid
Dragon Age Inquisition

Figure 5: t-SNE [28] embedding of items’ latent factors from
the /r/gameswap dataset. Colored dots show the projection
of recommendations in Table 5.

randomly sampled on the fly. Afterwards, the hyperparame-
ters are kept constant during the testing phase, where a new
train/test split is drawn at every round in the same fashion.
The results in Table 4 are averaged over 5 rounds. We found
that the optimal models have 40-dimensional latent factors
for both /r/gameswap and Ratebeer, and 100-dimensi-
onal factors for Bookmooch.

All code is available at http://swapit.github.io

Results. Table 4 summarizes the performance of the var-
ious instances of our approach. On average, our method
outperforms ‘vanilla’ matrix factorization by 15.71% across
the three datasets we consider. Each of the model exten-
sions (bidirectionality, social bias, and temporal dynamics)
makes a substantial contribution to the performance of our
method, yielding cumulative performance gains of 4.66%,
5.44%, and 5.61% (respectively). AUC scores of the final
model (MF+B+S+T) are above 0.9 on all three datasets.

In summary, a successful model for generating trade rec-
ommendations for online bartering requires flexibility in mod-
eling users’ preferences; approaches that are too ‘rigid’ (e.g.,
which use strict matching criteria) are unsuccessful, as dis-
cussed in Section 3.1. Beyond predicting users’ preferences
for items, a strong approach should also model the social and
temporal dynamics at play. We further analyze our results
and give examples below.

5.4 Discussion
The astute reader will notice that BVEM is missing from

Table 4. Due to the requirements of this method, its appli-

cation is only possible on the Bookmooch dataset, which
is the only one of the three containing pricing information
(see Section 3.1). More importantly, the BVEM approach
does not produce a preference estimate of a user for a given
item, which makes it impossible to evaluate its performance
under the same metric as that used for our approach.

Users’ decision processes can be influenced by external
factors, such as social ties and item availability. In such a
scenario, the success of a trade cannot be fully explained
by a low-rank decomposition (i.e., MF) that captures uni-
lateral preferences of users toward items. Bidirectionality
(MF+B) substantially improves the score over MF, and
leads to similar improvements in combination with all other
models. This suggests that a strong signal coming from one
of the traders can compensate for a weaker signal coming
from the other party. Note that the aggregation does not
depend on the predictor and, thus, can be applied to various
recommender systems techniques. Using the socially-aware
model MF+S described in Section 4.3, our predictor is able
to partially explain the observed variance by a social bias
that users exhibit toward their prior trading partners. Con-
sidering the same item with different owners, the model will
favor exchanges with users that already traded in the past.
Proposing viable exchanges with this additional constraint
consistently improved the score on our three datasets. The
biggest improvement can be seen for Ratebeer, the plat-
form with the highest percentage of recurrent trades be-
tween pairs of users. Beyond social biases, temporal bias
(MF+T) acts as a gating function as it decreases the score
of users/items that exhibit a long period of inactivity. As
with social bias, temporal bias can partially explain the score
of a trade by the recent burst of activity of the considered
user/item. Again, this addition in our model provides an
improvement on all our datasets.

A recommendation example (for /r/gameswap) is shown
in Table 5, illustrating the performance of our method with
temporal and social constraints. These recommendations
are also visualized in terms of a t-SNE embedding [28] in
Figure 5. Note that while even the simplest method (MF)
already generates semantically meaningful trades, they are
with unlikely trading partners due to lack of recent activity
and social ties. These latter two features are important to
ensure that plausible trades are recommended.

Advantages over previous approaches. Compared to
existing methods, there are several factors that make our
approach better suited to real-world bartering platforms.

First, our model outputs recommendations chosen from a
ranked list of all swap opportunities available on the plat-
form. This list contains not only items that a user men-
tioned explicitly in their wish list, but also items that are



User’s wish list

Super Mario World

Sonic Generation

Kirby’s Dream Land

Metroid: Zero Mission

Super Mario 64

Mario Kart: Super Circuit

Sly 3: Honor Among Thieves

MF MF + S MF + S + T

Recommendations
(ranked)

#own
most recent
activity

Recommendations
(ranked)

owner
activity

past
trans.

Recommendations
(ranked)

owner
activity

past
trans.

Sonic Generations 19 56 wks. Kid Icarus 24 wks. 2 Fire Emblem <1 wk. 0

Earthbound 14 22 wks. Final Fantasy 24 wks. 2 Contra <1 wk. 0

Super Mario Sunshine 26 22 wks. Beyond: Two Souls 24 wks. 2 Monster Hunter <1 wk. 1

Grand Theft Auto V 253 <1 wk. Fire Emblem 92 wks. 1 Bayonetta 2 <1 wk. 1

Fire Emblem 28 <1 wk. Paper Mario 92 wks. 1 Mario Kart 7 <1 wk. 1

Table 5: An example of recommendations produced by the models from Table 4. Left: The set of items in a user’s wish
list; most are Nintendo console games. Right: Recommendations. All methods correctly identify related games, as depicted
in Figure 5. However, matrix factorization (MF) alone suggests a heterogeneous set of games belonging to multiple users;
once social terms are added (MF+S), the system suggests trades with prior trading partners, but many of them have been
inactive for some time; once the temporal term is added (MF+S+T), the system finally identifies relevant games, amongst
active users, several of whom were prior trading partners.

likely to be preferred by the user, based on preference mod-
eling. CSEM [2] does not produce such a ranking, and
while BVEM [27] aims to output a ranked list of recom-
mendations, it fails due to the strictness of its assumptions,
as previously described.

Second, our approach works even when the user base con-
tains few compatible swap candidates, i.e., when few (or
zero) users exist such that their wish lists and give-away
lists are cross-compatible. Such a case occurs on the Swa-
padvd platform, as noted in Table 2. Applying BVEM on
this dataset would yield no recommendations at all, as there
are no two users with a bidirectional coincidence of ‘wants’.
This is also a plausible scenario for newly emerged platforms
with a small user base, where eligible swapping partners are
likely to be rare. We show that through preference modeling
via MF techniques (applied to implicit user feedback), our
method can recommend meaningful swap transactions from
early on, in order to support platform activity and growth.
This is also the reason why we can output long recommen-
dation lists, as opposed to very few recommendations per
user obtained under BVEM.

Finally, our model does not restrict the recommended
trades to contain only items from the users’ wish lists, consis-
tent with our observation that only 33.2% of the items that
users receive are explicitly listed. By modeling user pref-
erences with the help of Matrix Factorization, our method
allows us to estimate the users’ preferences for items they
have not explicitly desired, therefore allowing for potentially
serendipitous recommendations.

6. CONCLUSIONS AND FUTURE WORK
We introduced a new approach to recommending trades

in the context of online bartering platforms. We presented
several bartering datasets with transaction histories, cover-
ing books (Bookmooch), video games (/r/gameswap),
and beers (Ratebeer). We analyzed their properties, re-
vealing important reference points to be considered in the
design of a bartering recommender. By considering real-
world datasets, we found that previous approaches based
on matching algorithms face severe performance limitations,
due to the shortage of eligible swapping partners.

The approach we introduce builds upon well established
recommender systems techniques, including matrix factor-
ization, social regularization and temporally-aware models.
Our design is data-driven, following observations that are
consistent across the three aforementioned datasets, namely

that i) successful trades require reciprocal user interest, ii)
users develop ‘trust’ and trade according to their social ties,
and iii) activity density varies over time, for both items and
users. Our method is more flexible than existing approaches,
due to the use of preference modeling, allowing coherent
recommendations to be computed even in cases where few
swapping partners are strictly ‘eligible.’ This allows users
to receive potentially serendipitous item recommendations,
due to the fact that we do not impose them to exclusively
contain items from their wish lists.

As future work, we are interested in evaluating the per-
formance of our approach on different scenarios in which
reciprocal interest plays a considerable role, e.g. e-dating
platforms, partner match-up in online video games, etc. Ad-
ditionally, we hope to study the problem of bartering with
heterogeneous item types (i.e. items with large price differ-
ences) and to explore more complex preference aggregation
schemes for modeling the bidirectionality of interest between
potential trade partners.
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