
 
 
 
SOCIAL BIAS 
 

Directed bias from one user to another (asymmetric).  

TEMPORAL DYNAMICS 
 
 
 
 
 
Discard users/items that have been inactive for a long 
period. 

BIDIRECTIONALITY 
 
 
 
 
 
Re-rank recommendation vector according to the reciprocal 
interest: the arithmetic mean of both predicted scores.  

BARTERING BOOKS TO BEERS 
 

A RECOMMENDER SYSTEM FOR EXCHANGE PLATFORMS 

We propose a socially and temporally aware model for 
bartering-based recommendation, for which we introduce 
three novel datasets from online bartering platforms.  

Potential transactions

Tom’s wish list

Heineken Duvel Brewdog

Duvel

Chimay

Heineken

Tom

Jack

Jane

Rick

Jack’s wish list

Jane’s wish list

Rick’s wish list

MF	 MF+B	 MF+B+S	 MF+B+T	 MF+ALL	

Bookmooch	 0.758	 0.798	 0.849	 0.938	 0.958	
/r/gameswap 0.790		 0.842	 0.863	 0.890	 0.903	
Ratebeer	 0.824	 0.892	 0.962	 0.969	 0.983	

LIMITATIONS 
q  The need of a “double coincidence of wants” 
q  There is no common measure of value 

PLATFORMS 

BARTERING	

PROPOSED	METHOD	

q Successful trades require reciprocal user interest 
q Users develop ‘trust’ and trade according to their social 

ties 
q Activity density varies over time, for both items and users. 

CONCLUSION	

ŷuj ,ul,ik = pTuj
qik +

social biasz }| {
sujul + ⌧uj �(t; ¯tuj ) + ⌧ik�(t; ¯tik )| {z }

temporal dynamics

(4)

where t is the timestamp of the transaction sample, and t̄uj

and t̄ik are time points of activities for trades involving user
uj , and item ik (respectively).

4.5 Modeling Reciprocal Interest
In a bartering context, recommendations need to be ad-

dressed not just to a user, but to a user and each of the items
that they own. This reflects the idea that for each owned
item, a user may have di↵erent swapping opportunities. It
follows that for each (uj , ik), where ik is owned by uj , we
will generate a ranking of all possible pairs (ul, im), where
ul owns im, according to some preference score. It is worth
stressing that in this context, uj will have a di↵erent prefer-
ence score for item im owned by ul, than for the same item
owned by un 6= ul. In order to model the bidirectionality
of user preferences within each pair of potential swapping
partners, we will aggregate the preference of uj for im and
the preference of ul for ik into one meaningful score. Note
that we do not impose the constraint that im should be in
Wj , nor that ik belongs to Wl, so as to allow serendipity.

We evaluate potential transactions by defining an aggre-
gate score given by a function f : R2 ! R. In the following,
we consider uj to be the owner of ik, and ul to be the owner
of im. We want to evaluate the strength of the cross prefer-
ence within the (uj , ul) pair, with respect to items im and ik
(respectively). We therefore aggregate interest scores into a
single value, which quantifies the ‘strength’ of the pair’s po-
tential interaction. For this purpose we use the arithmetic
mean:

ŷuj ,im,ul,ik = f(ŷujulim , ŷulujik )

=
1
2
(ŷujulim + ŷulujik )

(the basic idea of the reciprocal interest model is depicted
on the right). In this case, a strong preference from one user
compensates for a potentially weaker one coming from the
other. We also considered other aggregating functions, such
as the harmonic mean [20], but found that the arithmetic
mean was consistently the best performing one.

5. EXPERIMENTS AND DISCUSSION

5.1 Parameter Learning
Since our input data consists of implicit preference signals,

our methods’ performance should be oriented towards cor-
rectly ranking items relative to each other, rather than accu-
rately predicting missing values from the interaction matrix
R. The BPR optimization technique introduced by Rendle
et al. [21] is designed for this type of optimization problem.
Following the notation of Rendle et al. [21] the update rules
for this setting are defined as

✓  ✓ + ↵ · (�(�x̂ujikim)
@x̂ujikim

@✓
+ �✓⌦

0(✓)), (5)

where x̂ujikim = ŷujik � ŷujim , and ✓ represents the set of
parameters to be learned. ⌦(✓) denotes a regularizer, and
in our case we opted for `

2

regularization, i.e., ⌦(✓) = k⇥k2
2

.

The term x̂ujikim denotes the di↵erence in preference
score of user uj for two items ik and im. Should the dif-
ference be negative, the user is assumed to prefer im over
ik, and should it be positive the user is assumed to prefer ik
over im. In other words, the framework optimizes the frac-
tion of times that the model ranks a traded item higher than
a (randomly sampled) non-traded item, which approximates
the AUC [21]. The update from Equation 5 is repeated with
a large number of random samples until convergence.
The item preference terms ŷujik and ŷujim in the above

can be adapted with any of the previously described models
(Sections 4.2—4.5).

5.2 Evaluation Methodology
Our datasets contain one-for-one item exchanges between

user pairs, directly from the transaction history. We express
such transactions as quadruplets (uj , ik, ul, im), where uj

owns ik and ul owns im, and define I+ to be the set of all
positive interactions extracted from the considered transac-
tions:

I+ = {(uj , ik, ul, im)|(ul, im) 2 Hr
j ^ (uj , im) 2 Hg

l ^
(uj , ik) 2 Hr

l ^ (ul, ik) 2 Hg
j }

Our evaluation set E consists of triplets (uj , im, in), where
(uj , ⇤, ⇤, im) 2 I+ means that we have observed a positive
signal from user uj towards item im, while in is randomly
chosen from the set of items which do not belong to either
Wj or Hr

j , meaning that uj did not express a preference
towards it. A model that performs well should rank un-
seen items which received positive feedback from uj (like im)
higher than items with no observed interaction (like in). We
formally define E below:

E =
�
(uj , im, in)|(⇤, im) 2 Hr

j ^ in /2Wj ^ (⇤, in) /2 Hr
j

 
.

To assess the e↵ectiveness of our approach, we select the
widely used metric Area Under the Curve (AUC) [25] as our
measure of performance:

AUC =
1
|E|

X

(uj ,im,in)2E

1(ŷujim � ŷujin) =
1
|E|

X

(uj ,im,in)2E

1(x̂ujimin), (6)

where 1 is the Heaviside function (the latter formula uses
the notation introduced in Section 5.1). Negative user-item
pairs (uj , in) are randomly sampled from a set of unobserved
interactions for user uj . This metric shows how well the
model ranks items that the user has actually received from
transactions that are withheld during training, versus items
that the user has not interacted with, or does not explicitly
desire.
Note that above we have expressed the AUC in terms

of our simplest preference model (ŷujim), in order to avoid
excessive notation. However, the above expression can be
adapted to include any of the previously described models.

5.3 Experiments
Experimental Setup. Experiments were performed on
a single machine running Matlab R2015b. Following the
methodology proposed by Rendle et. al [21], the hyperpa-
rameters of all the described methods have been tuned based
on the expected error estimated on a randomly drawn initial
train/test split. To create the split, positive samples were
randomly selected from I+ for each user, and set aside for
testing. The negative samples from the triplets of E were

Goal: Rank higher an observed trade than a randomly 
sampled negative example ≈ maximize AUC 
 
 
 
 
Learning using Bayesian Personalized Ranking (BPR), 
Rendle 2009  
 
 

EXPERIMENTS	

Illustration of the problem setting in which a user (Tom) can 
exchange an item with owners of other items available. 

SETTING	MAIN	CONTRIBUTION	

Users	 Items	 TransacBons	

Bookmooch 84‘989	 2’098’699	 148’755	

/r/gameswap 9’888	 3’470	 2’008	

Ratebeer 2’215	 35’815	 125’665	

as they have eligible swapping partners. Applying any such
technique to the aforementioned datasets would yield few
recommendations, and generally few options to any user re-
ceiving a recommendation.

Our observations point to the need for a more flexible ap-
proach, which better models user preferences, and is capable
of surfacing recommendations to a larger fraction of users.

4. MODEL

4.1 Problem Definition and Notation
Our notation is defined in Table 1.
The setting of the bartering platforms presently consid-

ered is described by a set of users U = {u
1

, u
2

, . . . um}, and
a set of items I = {i

1

, i
2

, . . . in} known at any time t. Each
user uj has a wish list Wj and a give-away list Gj , both of
which are available for all members to see. Wj is a subset
of I containing items which uj wishes to obtain, while Gj is
a subset of I with items to be given away by uj .

The key di↵erence between bartering compared to tradi-
tional recommendation is that users are both suppliers and
consumers. Thus, every item ik has an associated owner uj ,
in whose give-away list Gj it appears, and a set of users who
desire it. Note that there might be items that are listed as
give-aways but are not wished for by any user, just as there
may be items that are wished for but not available. Also,
each user uj has an associated history of transactions, which
we will denote by Hj . Since transactions are bidirectional,
we define Hg

j to contain all the items that uj gives away
in transactions, and similarly, Hr

j to be all those which uj

receives via transactions:

Hg
j = {(ul, ij!l) |uj gives item ij!l to ul}

Hr
j = {(ul, ij l) |uj receives item ij l from ul}

In the following sections, we use the notation ŷujik to
denote the estimate of user uj ’s preference for item ik.

4.2 Modeling Basic User Preferences
The first goal of our model is to estimate a user’s prefer-

ence for an individual item. As our data contains wish lists
and past transactions, we use them as implicit feedback sig-
nals [18] when building the preference model.

Following the approach proposed by Hu et al. [10], the
user-item interaction matrix R is built based on implicit
feedback signals as follows:

rujik =

⇢
1, if ik 2 Wj , or (⇤, ik) 2 Hr

j

0, otherwise

(i.e., 1 i↵ the item belongs to uj ’s wish list, or there exists
a past transaction in which uj receives ik).
We want to model the preference ŷuj ,ik that a user uj

exhibits toward item ik. We start with a low-rank model of
users and items:

ŷuj ,ik = pTuj
qik (1)

where puj and qik are vectors describing the ‘preferences’ of
the user uj and the ‘properties’ of the item ik. Although
we defer details of our optimization procedure until Section
5.1, our goal is that ŷuj ,ik should be large if and only if the
user is ‘compatible’ with the item.
As this formulation of the optimization problem is the

simplest one, we will reference it as a baseline during our
experiments.

4.3 Incorporating Social Bias
The e↵ect of incorporating social information into collabo-

rative filtering models has been shown to improve prediction
accuracy and alleviate data sparsity (e.g., Ma et al. [14], [7]).
As discussed in Section 3, users tend to repeatedly trade
with a selected subgroup of peers on the observed bartering
platforms, suggesting that their choices have a strong social
(or simply trust) component. This further points to the fact
that a plain low-rank decomposition of the interaction ma-
trix R as in Section 4.2 cannot fully capture the dynamics of
users’ behavior. Thus, we incorporate a directed social bias
S 2 R|U|⇥|U| as part of the predictor where sujul models the
bias for user uj toward user ul. The extended model to be
optimized is described as follows:

ŷuj ,ul,ik = pTuj
qik + sujul (2)

where the preference score ŷuj ,ul,ik is now in terms of an
item ik and a user ul with whom the item is being traded.
Note that this relation is asymmetric, as the bias from uj

toward ul may di↵er from the bias from ul towards uj .
Also note that the optimization remains tractable after

adding the social bias term, as in practice users trade with
a limited number of peers, rendering the matrix S sparse.

4.4 Adding Temporal Dynamics
User tastes may shift over time, or vary periodically (for

example, following certain holidays). Temporal dynamics
have previously been exploited in collaborative filtering set-
tings, e.g. to build temporally-aware models of preferences
on Netflix [11]. Motivated by the observations made in Sec-
tion 3, we extend our model from Equation 2 to capture the
temporal dynamics of bartering platforms.
There are two key aspects we wish to consider. Firstly,

the model should capture the activity ‘density’ of users. For
example, a user with high activity level at time t is prob-
ably more likely to trade at time t + ✏ than a user who
hasn’t traded during the same period. Secondly, the model
should capture seasonality, i.e., that certain items tend to
be more frequently requested during specific periods of the
year (e.g. Christmas beers at Christmas). The activity level
of users and the frequency with which items are traded can
be observed by analyzing the timestamps available in the
transaction histories of all three datasets.
In order to work with a smooth function, we approxi-

mate the trade time density using a Kernel Density Estima-
tor [24]. KDE is a non-parametric method for estimating
the Probability Density Function from a set of i.i.d. samples,
under weak smoothness assumptions. Equation 3 represents
such a density estimator for the sample set {x

1

, x
2

, . . . xn}:

�(x; x̄) =
1
n

nX

i=1

Kh(x� xi) =
1
nh

nX

i=1

K
⇣x� xi

h

⌘
(3)

For our purposes, we set K(x) = 1p
2⇡ exp(�

1

2

x2), i.e.,

the Gaussian kernel [15, 24]. Parameter h represents the
bandwidth, and can be set according to Silverman’s rule of
thumb [26], i.e., h ⇡ 1.06�̂n�1/5, where �̂ is the standard
deviation of the samples. This quantity is then incorporated
into our predictor by modulating it with a parameter per
item ⌧ik for item ik, and a parameter ⌧uj for user uj , which
are to be learned. Equation 4 represents our final model,
which includes the social bias and the temporal terms:

RESULTS	-	AUC	

Wish lists, give-away lists and transaction distributions unveil 
the existence of power users. 

DATA	DISTRIBUTION	

ŷuj ,ul,ik = pTuj
qik +

social biasz }| {
sujul + ⌧uj �(t; ¯tuj ) + ⌧ik�(t; ¯tik )| {z }

temporal dynamics

(4)

where t is the timestamp of the transaction sample, and t̄uj

and t̄ik are time points of activities for trades involving user
uj , and item ik (respectively).

4.5 Modeling Reciprocal Interest
In a bartering context, recommendations need to be ad-

dressed not just to a user, but to a user and each of the items
that they own. This reflects the idea that for each owned
item, a user may have di↵erent swapping opportunities. It
follows that for each (uj , ik), where ik is owned by uj , we
will generate a ranking of all possible pairs (ul, im), where
ul owns im, according to some preference score. It is worth
stressing that in this context, uj will have a di↵erent prefer-
ence score for item im owned by ul, than for the same item
owned by un 6= ul. In order to model the bidirectionality
of user preferences within each pair of potential swapping
partners, we will aggregate the preference of uj for im and
the preference of ul for ik into one meaningful score. Note
that we do not impose the constraint that im should be in
Wj , nor that ik belongs to Wl, so as to allow serendipity.

We evaluate potential transactions by defining an aggre-
gate score given by a function f : R2 ! R. In the following,
we consider uj to be the owner of ik, and ul to be the owner
of im. We want to evaluate the strength of the cross prefer-
ence within the (uj , ul) pair, with respect to items im and ik
(respectively). We therefore aggregate interest scores into a
single value, which quantifies the ‘strength’ of the pair’s po-
tential interaction. For this purpose we use the arithmetic
mean:

ŷuj ,im,ul,ik = f(ŷujulim , ŷulujik )

=
1
2
(ŷujulim + ŷulujik )

(the basic idea of the reciprocal interest model is depicted
on the right). In this case, a strong preference from one user
compensates for a potentially weaker one coming from the
other. We also considered other aggregating functions, such
as the harmonic mean [20], but found that the arithmetic
mean was consistently the best performing one.

5. EXPERIMENTS AND DISCUSSION

5.1 Parameter Learning
Since our input data consists of implicit preference signals,

our methods’ performance should be oriented towards cor-
rectly ranking items relative to each other, rather than accu-
rately predicting missing values from the interaction matrix
R. The BPR optimization technique introduced by Rendle
et al. [21] is designed for this type of optimization problem.
Following the notation of Rendle et al. [21] the update rules
for this setting are defined as

✓  ✓ + ↵ · (�(�x̂ujikim)
@x̂ujikim

@✓
+ �✓⌦

0(✓)), (5)

where x̂ujikim = ŷujik � ŷujim , and ✓ represents the set of
parameters to be learned. ⌦(✓) denotes a regularizer, and
in our case we opted for `

2

regularization, i.e., ⌦(✓) = k⇥k2
2

.

The term x̂ujikim denotes the di↵erence in preference
score of user uj for two items ik and im. Should the dif-
ference be negative, the user is assumed to prefer im over
ik, and should it be positive the user is assumed to prefer ik
over im. In other words, the framework optimizes the frac-
tion of times that the model ranks a traded item higher than
a (randomly sampled) non-traded item, which approximates
the AUC [21]. The update from Equation 5 is repeated with
a large number of random samples until convergence.
The item preference terms ŷujik and ŷujim in the above

can be adapted with any of the previously described models
(Sections 4.2—4.5).

5.2 Evaluation Methodology
Our datasets contain one-for-one item exchanges between

user pairs, directly from the transaction history. We express
such transactions as quadruplets (uj , ik, ul, im), where uj

owns ik and ul owns im, and define I+ to be the set of all
positive interactions extracted from the considered transac-
tions:

I+ = {(uj , ik, ul, im)|(ul, im) 2 Hr
j ^ (uj , im) 2 Hg

l ^
(uj , ik) 2 Hr

l ^ (ul, ik) 2 Hg
j }

Our evaluation set E consists of triplets (uj , im, in), where
(uj , ⇤, ⇤, im) 2 I+ means that we have observed a positive
signal from user uj towards item im, while in is randomly
chosen from the set of items which do not belong to either
Wj or Hr

j , meaning that uj did not express a preference
towards it. A model that performs well should rank un-
seen items which received positive feedback from uj (like im)
higher than items with no observed interaction (like in). We
formally define E below:

E =
�
(uj , im, in)|(⇤, im) 2 Hr

j ^ in /2Wj ^ (⇤, in) /2 Hr
j

 
.

To assess the e↵ectiveness of our approach, we select the
widely used metric Area Under the Curve (AUC) [25] as our
measure of performance:

AUC =
1
|E|

X

(uj ,im,in)2E

1(ŷujim � ŷujin) =
1
|E|

X

(uj ,im,in)2E

1(x̂ujimin), (6)

where 1 is the Heaviside function (the latter formula uses
the notation introduced in Section 5.1). Negative user-item
pairs (uj , in) are randomly sampled from a set of unobserved
interactions for user uj . This metric shows how well the
model ranks items that the user has actually received from
transactions that are withheld during training, versus items
that the user has not interacted with, or does not explicitly
desire.
Note that above we have expressed the AUC in terms

of our simplest preference model (ŷujim), in order to avoid
excessive notation. However, the above expression can be
adapted to include any of the previously described models.

5.3 Experiments
Experimental Setup. Experiments were performed on
a single machine running Matlab R2015b. Following the
methodology proposed by Rendle et. al [21], the hyperpa-
rameters of all the described methods have been tuned based
on the expected error estimated on a randomly drawn initial
train/test split. To create the split, positive samples were
randomly selected from I+ for each user, and set aside for
testing. The negative samples from the triplets of E were

S 
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as they have eligible swapping partners. Applying any such
technique to the aforementioned datasets would yield few
recommendations, and generally few options to any user re-
ceiving a recommendation.

Our observations point to the need for a more flexible ap-
proach, which better models user preferences, and is capable
of surfacing recommendations to a larger fraction of users.

4. MODEL

4.1 Problem Definition and Notation
Our notation is defined in Table 1.
The setting of the bartering platforms presently consid-

ered is described by a set of users U = {u
1

, u
2

, . . . um}, and
a set of items I = {i

1

, i
2

, . . . in} known at any time t. Each
user uj has a wish list Wj and a give-away list Gj , both of
which are available for all members to see. Wj is a subset
of I containing items which uj wishes to obtain, while Gj is
a subset of I with items to be given away by uj .

The key di↵erence between bartering compared to tradi-
tional recommendation is that users are both suppliers and
consumers. Thus, every item ik has an associated owner uj ,
in whose give-away list Gj it appears, and a set of users who
desire it. Note that there might be items that are listed as
give-aways but are not wished for by any user, just as there
may be items that are wished for but not available. Also,
each user uj has an associated history of transactions, which
we will denote by Hj . Since transactions are bidirectional,
we define Hg

j to contain all the items that uj gives away
in transactions, and similarly, Hr

j to be all those which uj

receives via transactions:

Hg
j = {(ul, ij!l) |uj gives item ij!l to ul}

Hr
j = {(ul, ij l) |uj receives item ij l from ul}

In the following sections, we use the notation ŷujik to
denote the estimate of user uj ’s preference for item ik.

4.2 Modeling Basic User Preferences
The first goal of our model is to estimate a user’s prefer-

ence for an individual item. As our data contains wish lists
and past transactions, we use them as implicit feedback sig-
nals [18] when building the preference model.

Following the approach proposed by Hu et al. [10], the
user-item interaction matrix R is built based on implicit
feedback signals as follows:

rujik =

⇢
1, if ik 2 Wj , or (⇤, ik) 2 Hr

j

0, otherwise

(i.e., 1 i↵ the item belongs to uj ’s wish list, or there exists
a past transaction in which uj receives ik).
We want to model the preference ŷuj ,ik that a user uj

exhibits toward item ik. We start with a low-rank model of
users and items:

ŷuj ,ik = pTuj
qik (1)

where puj and qik are vectors describing the ‘preferences’ of
the user uj and the ‘properties’ of the item ik. Although
we defer details of our optimization procedure until Section
5.1, our goal is that ŷuj ,ik should be large if and only if the
user is ‘compatible’ with the item.
As this formulation of the optimization problem is the

simplest one, we will reference it as a baseline during our
experiments.

4.3 Incorporating Social Bias
The e↵ect of incorporating social information into collabo-

rative filtering models has been shown to improve prediction
accuracy and alleviate data sparsity (e.g., Ma et al. [14], [7]).
As discussed in Section 3, users tend to repeatedly trade
with a selected subgroup of peers on the observed bartering
platforms, suggesting that their choices have a strong social
(or simply trust) component. This further points to the fact
that a plain low-rank decomposition of the interaction ma-
trix R as in Section 4.2 cannot fully capture the dynamics of
users’ behavior. Thus, we incorporate a directed social bias
S 2 R|U|⇥|U| as part of the predictor where sujul models the
bias for user uj toward user ul. The extended model to be
optimized is described as follows:

ŷuj ,ul,ik = pTuj
qik + sujul (2)

where the preference score ŷuj ,ul,ik is now in terms of an
item ik and a user ul with whom the item is being traded.
Note that this relation is asymmetric, as the bias from uj

toward ul may di↵er from the bias from ul towards uj .
Also note that the optimization remains tractable after

adding the social bias term, as in practice users trade with
a limited number of peers, rendering the matrix S sparse.

4.4 Adding Temporal Dynamics
User tastes may shift over time, or vary periodically (for

example, following certain holidays). Temporal dynamics
have previously been exploited in collaborative filtering set-
tings, e.g. to build temporally-aware models of preferences
on Netflix [11]. Motivated by the observations made in Sec-
tion 3, we extend our model from Equation 2 to capture the
temporal dynamics of bartering platforms.
There are two key aspects we wish to consider. Firstly,

the model should capture the activity ‘density’ of users. For
example, a user with high activity level at time t is prob-
ably more likely to trade at time t + ✏ than a user who
hasn’t traded during the same period. Secondly, the model
should capture seasonality, i.e., that certain items tend to
be more frequently requested during specific periods of the
year (e.g. Christmas beers at Christmas). The activity level
of users and the frequency with which items are traded can
be observed by analyzing the timestamps available in the
transaction histories of all three datasets.
In order to work with a smooth function, we approxi-

mate the trade time density using a Kernel Density Estima-
tor [24]. KDE is a non-parametric method for estimating
the Probability Density Function from a set of i.i.d. samples,
under weak smoothness assumptions. Equation 3 represents
such a density estimator for the sample set {x

1

, x
2

, . . . xn}:

�(x; x̄) =
1
n

nX

i=1

Kh(x� xi) =
1
nh

nX

i=1

K
⇣x� xi

h

⌘
(3)

For our purposes, we set K(x) = 1p
2⇡ exp(�

1

2

x2), i.e.,

the Gaussian kernel [15, 24]. Parameter h represents the
bandwidth, and can be set according to Silverman’s rule of
thumb [26], i.e., h ⇡ 1.06�̂n�1/5, where �̂ is the standard
deviation of the samples. This quantity is then incorporated
into our predictor by modulating it with a parameter per
item ⌧ik for item ik, and a parameter ⌧uj for user uj , which
are to be learned. Equation 4 represents our final model,
which includes the social bias and the temporal terms:
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ŷuj ,ul,ik = pTuj
qik +

social biasz }| {
sujul + ⌧uj �(t; ¯tuj ) + ⌧ik�(t; ¯tik )| {z }

temporal dynamics

(4)

where t is the timestamp of the transaction sample, and t̄uj

and t̄ik are time points of activities for trades involving user
uj , and item ik (respectively).

4.5 Modeling Reciprocal Interest
In a bartering context, recommendations need to be ad-

dressed not just to a user, but to a user and each of the items
that they own. This reflects the idea that for each owned
item, a user may have di↵erent swapping opportunities. It
follows that for each (uj , ik), where ik is owned by uj , we
will generate a ranking of all possible pairs (ul, im), where
ul owns im, according to some preference score. It is worth
stressing that in this context, uj will have a di↵erent prefer-
ence score for item im owned by ul, than for the same item
owned by un 6= ul. In order to model the bidirectionality
of user preferences within each pair of potential swapping
partners, we will aggregate the preference of uj for im and
the preference of ul for ik into one meaningful score. Note
that we do not impose the constraint that im should be in
Wj , nor that ik belongs to Wl, so as to allow serendipity.

We evaluate potential transactions by defining an aggre-
gate score given by a function f : R2 ! R. In the following,
we consider uj to be the owner of ik, and ul to be the owner
of im. We want to evaluate the strength of the cross prefer-
ence within the (uj , ul) pair, with respect to items im and ik
(respectively). We therefore aggregate interest scores into a
single value, which quantifies the ‘strength’ of the pair’s po-
tential interaction. For this purpose we use the arithmetic
mean:

ŷuj ,im,ul,ik = f(ŷujulim , ŷulujik )

=
1
2
(ŷujulim + ŷulujik )

(the basic idea of the reciprocal interest model is depicted
on the right). In this case, a strong preference from one user
compensates for a potentially weaker one coming from the
other. We also considered other aggregating functions, such
as the harmonic mean [20], but found that the arithmetic
mean was consistently the best performing one.

5. EXPERIMENTS AND DISCUSSION

5.1 Parameter Learning
Since our input data consists of implicit preference signals,

our methods’ performance should be oriented towards cor-
rectly ranking items relative to each other, rather than accu-
rately predicting missing values from the interaction matrix
R. The BPR optimization technique introduced by Rendle
et al. [21] is designed for this type of optimization problem.
Following the notation of Rendle et al. [21] the update rules
for this setting are defined as

✓  ✓ + ↵ · (�(�x̂ujikim)
@x̂ujikim

@✓
+ �✓⌦

0(✓)), (5)

where x̂ujikim = ŷujik � ŷujim , and ✓ represents the set of
parameters to be learned. ⌦(✓) denotes a regularizer, and
in our case we opted for `
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regularization, i.e., ⌦(✓) = k⇥k2
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.

The term x̂ujikim denotes the di↵erence in preference
score of user uj for two items ik and im. Should the dif-
ference be negative, the user is assumed to prefer im over
ik, and should it be positive the user is assumed to prefer ik
over im. In other words, the framework optimizes the frac-
tion of times that the model ranks a traded item higher than
a (randomly sampled) non-traded item, which approximates
the AUC [21]. The update from Equation 5 is repeated with
a large number of random samples until convergence.
The item preference terms ŷujik and ŷujim in the above

can be adapted with any of the previously described models
(Sections 4.2—4.5).

5.2 Evaluation Methodology
Our datasets contain one-for-one item exchanges between

user pairs, directly from the transaction history. We express
such transactions as quadruplets (uj , ik, ul, im), where uj

owns ik and ul owns im, and define I+ to be the set of all
positive interactions extracted from the considered transac-
tions:

I+ = {(uj , ik, ul, im)|(ul, im) 2 Hr
j ^ (uj , im) 2 Hg

l ^
(uj , ik) 2 Hr

l ^ (ul, ik) 2 Hg
j }

Our evaluation set E consists of triplets (uj , im, in), where
(uj , ⇤, ⇤, im) 2 I+ means that we have observed a positive
signal from user uj towards item im, while in is randomly
chosen from the set of items which do not belong to either
Wj or Hr

j , meaning that uj did not express a preference
towards it. A model that performs well should rank un-
seen items which received positive feedback from uj (like im)
higher than items with no observed interaction (like in). We
formally define E below:

E =
�
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To assess the e↵ectiveness of our approach, we select the
widely used metric Area Under the Curve (AUC) [25] as our
measure of performance:
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1
|E|

X

(uj ,im,in)2E

1(x̂ujimin), (6)

where 1 is the Heaviside function (the latter formula uses
the notation introduced in Section 5.1). Negative user-item
pairs (uj , in) are randomly sampled from a set of unobserved
interactions for user uj . This metric shows how well the
model ranks items that the user has actually received from
transactions that are withheld during training, versus items
that the user has not interacted with, or does not explicitly
desire.
Note that above we have expressed the AUC in terms

of our simplest preference model (ŷujim), in order to avoid
excessive notation. However, the above expression can be
adapted to include any of the previously described models.

5.3 Experiments
Experimental Setup. Experiments were performed on
a single machine running Matlab R2015b. Following the
methodology proposed by Rendle et. al [21], the hyperpa-
rameters of all the described methods have been tuned based
on the expected error estimated on a randomly drawn initial
train/test split. To create the split, positive samples were
randomly selected from I+ for each user, and set aside for
testing. The negative samples from the triplets of E were
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